- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Adams, Dean C. (1)
-
Blomberg, ed., Simone (1)
-
Collyer, Michael L. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract It has become common in evolutionary biology to characterize phenotypes multivariately. However, visualizing macroevolutionary trends in multivariate datasets requires appropriate ordination methods.In this paper we describe phylogenetically aligned component analysis (PACA): a new ordination approach that aligns phenotypic data with phylogenetic signal. Unlike phylogenetic principal component analysis (Phy‐PCA), which finds an alignment of a principal eigenvector that is independent of phylogenetic signal, PACA maximizes variation in directions that describe phylogenetic signal, while simultaneously preserving the Euclidean distances among observations in the data space.We demonstrate with simulated and empirical examples that with PACA, it is possible to visualize the trend in phylogenetic signal in multivariate data spaces, irrespective of other signals in the data. In conjunction with Phy‐PCA, one can visualize both phylogenetic signal and trends in data independent of phylogenetic signal.Phylogenetically aligned component analysis can distinguish between weak phylogenetic signals and strong signals concentrated in only a portion of all data dimensions. We provide empirical examples that emphasize the difference. Use of PACA in studies focused on phylogenetic signal should enable much more precise description of the phylogenetic signal, as a result.Overall, PACA will return a projection that shows the most phylogenetic signal in the first few components, irrespective of other signals in the data. By comparing Phy‐PCA and PACA results, one may glean the relative importance of phylogenetic and other (ecological) signals in the data.more » « less
An official website of the United States government
